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In this paper, we found a new representation for self-duality . In addition, exact solution
class of the classical SU (2) Yang–Mills field in four-dimensional Euclidean space and
two exact solution classes for SU (2) Yang–Mills when ρ is a complex analytic function
are also obtained.
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1. INTRODUCTION

The self-dual Yang–Mills (a system of for Lie algebra-valued functions of C4)
play a central role in the field of integrable systems and also play a fundamental
role in several other areas of mathematics and physics (Khater et al., 1999a,b,
2002; Ablowitz et al., 2003).

In addition, the self-dual Yang–Mills are of great importance in their own right
and have found a remarkable number of applications in physics and mathematics
as well. These arise in the context of gauge theory (Rajaraman, 1989), in classical
general relativity (Mason and Newman, 1989; Witten, 1979), and can be used as
a powerful tool in the analysis of 4-manifolds (Donaldson, 1983).

Nonabelian gauge theories first appeared in the seminal work of Yang and
Mills (1954) as a nonabelian generalization of Maxwells. The fact that the Yang–
Mills have a natural geometric interpretation was recognized early on in the history
of gauge theory (Zakharov and Shabat, 1972; Ablowitz et al., 1973).

The Yang–Mills are a set of coupled, second-order partial differential equa-
tions in four dimensions for the Lie algebra-valued gauge potential functions Aµ,
and are extremely difficult to solve in general. The self-dual Yang–Mills describe
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a connection for a bundle over the Grassmannian of two-dimensional subspaces
of the twistor space (Corrigan, 1979a,b).

A very important property of the theory of nonabelian gauge fields is that
the action functional has local minima in the Euclidean domain with nonvanish-
ing field strength Fµν (Abolwitz and Clarkson, 1991). The corresponding field
configurations, which are often called pseudoparticles, have the self-dual or anti-
self-dual field strength, and fall into topologically inequivalent classes labelled by
an integer n, the Pontryagin index. The existence of these nonlocal minima was
first pointed out by Belavin et al. (1975) who also exhibited the solution of the
self-duality with n = 1 for an SU (2) gauge group. Solutions of the self-duality
with an arbitrary number of pesudoparticles were discovered by Witten (1979)
and ‘t Hooft (1979).

In this paper, we present a new representation and exact solutions for the
self-duality.

The paper is organized as follows: This introduction followed by the new
representation of the self-duality in Section 2. In Section 3 we, found an exact
solution class of the classical SU (2) Yang–Mills field . Moreover, two exact
solution classes for self-dual SU (2) gauge fields on Euclidean space when ρ is a
complex analytic function are given in Section 4.

2. NEW REPRESENTATION OF THE SELF-DUALITY

The essential idea of Yang and Mills (1954) is to consider an analytic con-
tinuation of the gauge potential Aµ into complex space where x1, x2, x3 and x4

are complex. The self-duality Fµν = ∗Fµν are then valid also in complex space,
in a region containing real space where the x ′s are real. Now consider four new
complex variables y, y, z and z defined by

√
2y = x1 + ix2,

√
2y = x1 − ix2,√

2z = x3 − ix4,
√

2z = x3 + ix4. (1)

It is simple to check that the self-duality Fµν = ∗
Fµν reduces to

Fyz = 0, Fy z = 0, Fyy + Fzz = 0. (2)

Equations (2) can be immediately integrated, since they are pure gauge, to give
(Chau and Yamanaka, 1992, 1993; Ge et al., 1994)

Ay = D−1Dy, Az = D−1Dz, Ay = D
−1

Dy, Az = D
−1

Dz, (3)

where D and D are arbitrary 2 × 2 complex matrix functions of y, y, z and z with
determinant = 1 ( for SU (2) gauge group ) and Dy = ∂yD, etc. For real gauge
fields Aµ

.= − A+
µ (the symbol

.= is used for valid only for real values of x1, x2, x3
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and x4), we require

D
.= (D+)−1. (4)

Gauge transformations are the transformations

D −→ DU, D −→ DU, U+U = I, (5)

where U is a 2 × 2 complex matrix function of y, y, z and z with determinant = 1.
Under transformation (5), (4) remains invariant. We now define the hermitian
matrix J as (Corrigan it et al., 1978, 1979, 1983)

J≡DD
−1 .= DD+. (6)

J has the very important property of being invariant under the gauge transformation
(5). The only nonvanishing field strengths in terms of J becomes

Fuv = −D
−1

(J−1Ju)vD, (7)

(u, v = y, z) and the remaining self-duality (2) takes the form:

(J−1Jy)y + (J−1Jz)z = 0. (8)

The action density in terms of J (Corrigan and Hasslacher, 1979) is

φ(J ) ≡ − 1

2
T rFµνFµν = −2T r(FyyFzz + FyzFyz), (9)

where

Fµν = ∂µAν − ∂νAµ − [Aµ,Aν]. (10)

Our construction begins by explicit parametrization of the matrix J

J =
(

φ ρ

ρ
1+ρρ

φ

)
, (11)

and for real gauge fields Aµ
.= − A+

µ , we require φ
.=real, ρ

.=ρ∗ (ρ∗ ≡
complex conjugate of ρ). The self-duality (8) take the form

1

2
(1 + ρρ)∂µ∂µlnφ − 1

2
ρ∂µ∂µρ + ρ

φ
[φyρy + φzρz] + ρ

φ
[φyρy + φzρz]

−ρyρy + ρzρz] = 0, (12)

φ∂µ∂µρ − ρ∂µ∂µφ + 2(φyρy + φzρz − φyρy − φzρz) = 0, (13)

φ∂µ∂µρ − ρ∂µ∂µφ + 2(φyρy + φzρz − φyρy − φzρz) = 0, (14)

where ∂µ∂µ = 2(∂y∂y + ∂z∂z).
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The positive definite Hermitian matrix J = DD+ can be factored into a
product upper and lower (or vice versa) triangular matrices as follows

J = RR+ = RIRI+,

R =




√
φ 0

ρ√
φ

1√
φ


 , RI =




1√
φI

ρI√
φI

0
√

φI


 , (15)

φ
.= real, ρ

.= ρ∗, φI .= real, ρI .=ρI∗. (16)

It is evident from (15) that one can choose a gauge so that D = R or D = RI and
it is easy to check that in both gauges the self-duality (12)–(14) (in the case of
D = RI all the φ, ρ, ρ are replaced by φI , ρI , ρI ).

From (15) we see that R−1RI is a unitary matrix so that we can always make
a gauge transformation from the R gauge to the RI gauge.

Theorem 1. If (φ, ρ, ρ) satisfy (12)–(14) then so do (φI , ρI , ρI ) defined by
(Prasad, 1980)

φI = φ

1 + ρρ
, ρI = ρ

1 + ρρ
, ρI = ρ

1 + ρρ
.

3. EXACT SOLUTION CLASS OF THE CLASSICAL
SU(2)YANG–MILLS FIELD

To obtain an exact solution class of the classical SU (2) Yang–Mills field in
four-dimensional Euclidean space, consider the system.

1

2
(1 + ρρ)∂µ∂µlnφ − 1

2
ρ∂µ∂µρ + ρ

φ
[φyρy + φzρz] + ρ

φ
[φyρy + φzρz]

−[ρyρy + ρzρz] = 0,

φ∂µ∂µρ − ρ∂µ∂µφ + 2(φyρy + φzρz − φyρy − φzρz) = 0. (17)

Let us make the ansatz (Kyriakopoulos, 1980)

φ = φ(g), ρ = eiaσ (g). (18)

Where g = g(x1, x2, x3, x4) is a real function of xµ, µ = 1, 2, 3, 4, φ and σ are
real functions of g, and a is a real constant. Then (17) give, the relations(

gyy + gzz

φ4

2

) (
1 + σ 2

φ2

)′
+ (gygy + gzgz)φ

2

[
(1 + σ 2)

φ′

φ
− σσ ′

]′
= 0, (19)

(gyy + gzz)φ
2

(
σ

φ

)′
+ (gygy + gzgz)(φσ ′ − σφ′)′ = 0. (20)
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Where the prime means differentiation with respect to g. The above relations
imply that the determinant of the coefficients of (gyy + gzz) and (gygy + gzgz) is
zero i.e. (

1 + σ 2

φ2

)′
(φσ ′ − σφ′)′ − 2

[
(1 + σ 2)

φ′

φ
− σσ ′

]′ (
σ

φ

)′
= 0. (21)

We shall determine φ and σ from the above (21), let ( 1+σ 2

φ2 ) = u, then ( 1+σ 2

φ2 )′ = u′,
(21) takes the form

(u′φ2)′
(

φσ ′ − σφ′

φ2

)
+ u′(φσ ′ − σφ′)′ = 0, (22)

if we write (u′φ2) = h, (φσ ′ − σφ′) = w, then (22) becomes

h′w + w′h = 0, (23)

from (23), we find wh = c′, then w = c, where c and c′ are constants. Therefore
we get finally

φ =
√

c

2
e−g, σ =

√
c

2
eg, then ρ =

√
c

2
eg+ia. (24)

Applying theorem (1) to φ and ρ of (24), then we get

φI =
√

c
2e−g

1 + c
2e2g

, ρI =
√

c
2eg−ia

1 + c
2e2g

, ρI =
√

c
2eg+ia

1 + c
2e2g

. (25)

(24) and (25) is a new class of solutions of Yang–Mills for self-dual SU (2) gauge
fields.

4. EXACT SOLUTIONS FOR SELF-DUAL SU(2) GAUGE FIELDS
ON EUCLIDEAN SPACE WHEN ρ IS A COMPLEX
ANALYTIC FUNCTION

Following (Khater et al., 2004), we reduce the for self-dual SU (2) gauge
fields on Euclidean space to the following

1

2
(1 + ρρ)∂µ∂µlnφ − 1

2
ρ∂µ∂µρ + ρ

φ
[φyρy + φzρz] + ρ

φ
[φyρy + φzρz]

− [ρyρy + ρzρz] = 0,

φ∂µ∂µρ − ρ∂µ∂µφ + 2(φyρy + φzρz − φyρy − φzρz) = 0. (26)

When ρ is a complex analytic function of y and z, then we have

ρy = ρz = 0, ρyy + ρzz = 0. (27)
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Then, the self-dual Yang–Mills (26) takes the form

φ(φyy + φzz) − (φyφy + φzφz) = 0, (28)

ρ(φyy + φzz) − (ρyφy + ρzφz) = 0. (29)

We consider now two cases: (a) Let ρ = ρ(φ), then we find

ρy = ρ ′φy, ρz = ρ ′φz. (30)

Then the two Equations (28) and (29) becomes

φ(φyy + φzz) − (φyφy + φzφz) = 0, (31)

ρ(φyy + φzz) − ρ ′(φyφy + φzφz) = 0. (32)

If we do not consider the case (φyy + φzz) = 0 and (φyφy + φzφz) = 0, then we
have

φρ ′ − ρ = 0, (33)

by integration we obtain

ρ = cφ, where c is complex constant. (34)

Both (31) and (32) reduce to the same. A solution is given by

φy = φz φy = φz. (35)

The solution class is given by

φ = F (y + z, y − z), (36)

where F is an arbitrary function, (34) and (36) gives a new class of solutions of
Yang–Mills for self-dual SU (2) gauge fields. Applying theorem (1) to φ and ρ of
(34) and (36), then we get

φI = F

1 + ccF 2
, ρI = cF

1 + ccF 2
, ρI = cF

1 + ccF 2
. (37)

(b) Let us make the ansatz

φ = φ(g), ρ = eiaσ (g). (38)

where g = g(x1, x2, x3, x4) is a real function of xµ, µ = 1, 2, 3, 4, φ and σ are
real functions of g, and a is a real constant. Then (28) and (29) give the relations

φφ′(gyy + gzz) + (gygy + gzgz)φ
2[φφ′′ − φ′2] = 0, (39)

σφ′(gyy + gzz) + (gygy + gzgz)(σφ′′ − φ′σ ′) = 0. (40)

where the prime means differentiation with respect to g. The above relations
imply that the determinant of the coefficients of (gyy + gzz) and (gygy + gzgz) is
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zero i.e.,

σ ′

σ
= φ′

φ
, (41)

by integrating(41), we obtain

σ (g) = cφ(g), ρ = ceiaφ(g). (42)

Applying Theorem 1 to φ and ρ of (42), then we get

φI = φ(g)

1 + c2φ2(g)
, ρI = ce−iaφ(g)

1 + c2φ2(g)
, ρI = ceiaφ(g)

1 + c2φ2(g)
. (43)

(42) and (43) is a new class of solutions of Yang–Mills for self-dual SU (2) gauge
fields.
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